TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 01/10 pp881-893
DOI: 10.26599/TST.2021.9010082
Volume 27, Number 6, December 2022

MIX-RS: A Multi-Indexing System Based on HDFS for
Remote Sensing Data Storage

Jiashu Wu, Jingpan Xiong, Hao Dai, Yang Wang*, and Chengzhong Xu

Abstract: A large volume of Remote Sensing (RS) data has been generated with the deployment of satellite
technologies. The data facilitate research in ecological monitoring, land management and desertification, etc.
The characteristics of RS data (e.g., enormous volume, large single-file size, and demanding requirement of fault
tolerance) make the Hadoop Distributed File System (HDFS) an ideal choice for RS data storage as it is efficient,
scalable, and equipped with a data replication mechanism for failure resilience. To use RS data, one of the most
important techniques is geospatial indexing. However, the large data volume makes it time-consuming to efficiently
construct and leverage. Considering that most modern geospatial data centres are equipped with HDFS-based
big data processing infrastructures, deploying multiple geospatial indices becomes natural to optimise the efficacy.
Moreover, because of the reliability introduced by high-quality hardware and the infrequently modified property of
the RS data, the use of multi-indexing will not cause large overhead. Therefore, we design a framework called
Multi-IndeXing-RS (MIX-RS) that unifies the multi-indexing mechanism on top of the HDFS with data replication
enabled for both fault tolerance and geospatial indexing efficiency. Given the fault tolerance provided by the HDFS,
RS data are structurally stored inside for faster geospatial indexing. Additionally, multi-indexing enhances efficiency.
The proposed technique naturally sits on top of the HDFS to form a holistic framework without incurring severe
overhead or sophisticated system implementation efforts. The MIX-RS framework is implemented and evaluated
using real remote sensing data provided by the Chinese Academy of Sciences, demonstrating excellent geospatial

indexing performance.

Key words: Remote Sensing (RS) data; geospatial indexing; multi-indexing mechanism; Hadoop Distributed File
System (HDFS); Multi-IndeXing-RS (MIX-RS)

e Jiashu Wu, Jingpan Xiong, and Hao Dai are with Shenzhen
Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China, and the University of
Chinese Academy of Sciences, Beijing 100049, China. E-mail:
{js.wu, jp.xiong, hao.dai}@siat.ac.cn.

e Yang Wang is with Guangdong-HongKong-Macao Joint
Laboratory of Human-Machine Intelligence-Synergy Systems,
Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China. E-mail:
yang.wangl @siat.ac.cn.

e Chengzhong Xu is with the Faculty of Science and Technology,
University of Macau, Macau 999078, China, and Shenzhen
Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China. E-mail: czxu@um.edu.mo.

* To whom correspondence should be addressed.

Manuscript received: 2021-05-24; revised: 2021-08-26;
accepted: 2021-10-06

1 Introduction

Advanced satellites from several space agencies!!=! are
constantly orbiting the planet, generating a massive
amount of Remote Sensing (RS) datal*"!. The size of
RS images is typically large as they are captured by top-
tier camera devices with multiple bands or layers. As the
RS data are produced daily!® in the era of big datal® '],
the order of magnitude of the data grows to terabyte!!!!
or even petabyte!'?l. As a result, the Hadoop Distributed
File System (HDFS) is often utilised as storage for
the RS datal'*'9. Deploying HDFS as the RS data
storage can not only bring efficiency and scalability
as the amount of data increases but also provide fault
tolerance because of the data replication equipped by the

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

882 Tsinghua Science and Technology, December 2022, 27(6): 881-893

HDFS!71.

However, the HDFS does not address the inefficiency
of the geospatial indexing caused by the ever-growing
data volume. Constant research efforts have been
directed to optimise the efficacy of geospatial indexing
and the utilisation of RS datal'®-2!). However, existing
frameworks are inefficient because they use Hadoop
MapReduce!'® 20211 which is time-consuming at start-
up!??!, requires sophisticated effort to implement and
change, and does not attempt to use multi-indexing to
optimise the performance.

Given that the RS data are stored on HDFS with data
replication enabled, we consider it is natural to deploy
a multi-indexing mechanism on top of the HDFS to
form a unified framework for better geospatial indexing
efficiency. The rationales of using the multi-indexing
mechanism are as follows:

e RS data are stored on HDFS with data
replication enabled, therefore, unifying the multi-
indexing mechanism on top of the data replication
is natural and feasible. The storage nodes can also
parallelise the index construction and querying, boosting
the indexing performance.

o Using multiple light-weighted geospatial indexing
algorithms makes the multi-indexing mechanism more
resilient to single-point failures. Moreover, as different
indexing algorithms may present different performances
when processing queries that involve varying amounts
of data, utilising the fastest one in the multi-indexing
mechanism can boost the indexing performance when
tackling different queries.

e RS data are stored in modern data centres equipped
with top-tier hardware infrastructures that are highly
reliable and less frequent to fail'>3!. Therefore, geospatial
indices will not be frequently re-constructed due to
frequent hardware failures and hence utilising multiple
geospatial indices will not cause severe overhead.

e RS data also have characteristics of not being
frequently modified, i.e., nearly read-only and stored in
a well-structured manner, which benefit geospatial index
construction and avoid constant index re-construction.
As such, building multiple geospatial indices using
relatively light-weighted indexing algorithms is feasible
and suitable for RS data and will not cause severe time
or space overhead.

In this paper, considering the benefit and suitability
of using the multi-indexing mechanism to improve
geospatial indexing efficiency, we design a framework
named Multi-IndeXing-Remote Sensing (MIX-RS). For

the multi-indexing mechanism, two popular and broadly-
used geospatial indexing methods, i.e., GeoHash!?*-27],
QuadTree!?® 21, as well as a traditional indexing method
“Orthogonal List”, are constructed and unified to form
a multi-indexing ensemble. These indexing methods
are light-weight, simple, and less computation-intensive
compared with other geospatial indexing methods, and
hence will not compromise the efficiency in terms of
time and space!?%30:311 The MIX-RS then unifies the
multi-indexing mechanism on top of the HDFS with
data replication. It can improve the geospatial indexing
performance and benefit the applicability of RS data
while not causing severe overhead. Moreover, the MIX-
RS framework does not require fundamental changes
and only needs subtle implementation efforts, making it
applicable to other applications*>="). The prototype
of the MIX-RS framework is implemented, and is
evaluated using real RS data provided by the Chinese
Academy of Sciences!® 3], demonstrating superior
indexing performance over compared indexing methods
and frameworks.

In summary, we make the following contributions in
this paper:

e We design the MIX-RS framework that naturally
unifies the multi-indexing mechanism on top of the
HDEFS with data replication enabled, which aims for
both fault tolerance and geospatial indexing efficiency
improvement.

e The proposed MIX-RS framework improves the
geospatial indexing performance and the applicability of
RS data while not causing severe overhead or requiring
sophisticated system implementation.

e We implement the MIX-RS framework and
evaluate it using real RS data to validate its excellent
geospatial indexing performance.

The rest of this paper is organised as follows:
Related geospatial indexing methods, as well as some
frameworks that are used to index and query geospatial
data, are introduced in Section 2. By analysing these
related methods, the rationale and motivation of the
proposed MIX-RS framework are introduced, and
explained in detail in Section 3. Section 4 presents the
empirical evaluation and performance analysis of the
MIX-RS framework. Section 5 concludes the paper.

2 Related Work and Opportunity

As the scale of RS data keeps growing rapidly, how to
efficiently index the data to satisfy user queries becomes
a crucial problem, and thereby has attracted attention

Jiashu Wu et al.: MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage 883

from both industry and academic communities. In
this section, we first overview widely used geospatial
indexing algorithms, then present proposed frameworks

that deal with efficient geospatial storage and indexing.

Finally, we identify their deficiencies to show the
motivations and research opportunities of our proposed

multi-indexing mechanism and the MIX-RS framework.

2.1 Geospatial indexing algorithm

Eldawy and Mokbel!'¥! and Aji et al.’®! proposed
the Uniform Grid Index, which is one of the most
commonly used geospatial indexing algorithms. The
Uniform Grid Index performs geospatial indexing by
constructing an index table based on the longitude and
latitude coordinates. However, the algorithm needs
to traverse the entire index table when looking for a
specific coordinate, resulting in tremendous space and
time consumption. If, in addition, temporal information
is added as a new indexing dimension, then the storage
complexity will be severely raised, and the searching
and indexing efficiency will be heavily impaired.
Whitman et al.!?8! put forward the QuadTree indexing
algorithm. As illustrated in Fig. 1, the RS data are
commonly divided into four quadrants by major RS
applications, such as Google Earth, which makes the
QuadTree indexing algorithm very suitable to index RS
data. The QuadTree indexing algorithm transforms the
quadrants into a tree-like structure, and each quadrant
is further divided in the same way, forming a QuadTree

Fig. 1 An illustrative example of the QuadTree algorithm

when storing the RS data of Beijing, the capital of China.

The RS data are divided into four quadrants and stored
into a tree-like structure, where each quadrant represents a
sub-region of the city. Each quadrant is then further divided
in the same way, forming a QuadTree with several layers.

with several layers, as shown in Fig. 1. Since each sub-
tree in the QuadTree indexing structure contains a piece
of the sub-region of the globe, QuadTree is very efficient
when performing regional queries. Compared with the
Uniform Grid Index algorithm that simply traverses the
longitude and latitude index, the QuadTree possesses
better efficiency. Moreover, the space overhead caused
by the QuadTree indexing algorithm is not heavy.

Fox et al.l>! presented the GeoHash indexing
algorithm. GeoHash encodes a geographic location into
a string containing letters and digits so that the longer
the shared prefix between two geohashes, the spatially
closer they are together. The binary coordinate encoding
is utilised to convert a coordinate range into a string
of binary numbers, which is then grouped into several
6-digit groups, and finally converted using Base32
encoding. An illustrative example of Beijing is presented
in Fig. 2. In this example, the Forbidden City (north-west
in the lower-right square) and Beijing Central Business
District (CBD, north-east in the lower-right square) have
their geohashes start with the common prefix “4”. Inside
the sub-region with geohash “41”, the Forbidden City
and the Qianmen Business District share a common
prefix “41” since they are spatially closer to each other.
The GeoHash is highly efficient as it reduces the length
of the encoding to be stored, leading to significantly

Fig. 2 An illustrative example of the GeoHash algorithm
when processing the RS data of Beijing. In the lower-right
square, Forbidden City (with GeoHash “41”) and Beijing
CBD (with GeoHash “42”’) share the same GeoHash prefix
“4 as they are spatially close to each other. In the smaller
upper-left square, Forbidden City (with GeoHash “411”’) and
Qianmen Business District (with GeoHash “413”) share a
longer common GeoHash prefix which is “41”, since they are
geographically closer to each other than the distance between
the Forbidden City and Beijing CBD. Hence, GeoHash
encodes a geographic location into a string so that the longer
the shared prefix between two geohashes, the spatially closer
they are together. The GeoHash codes in this example are for
illustration purposes only.

884 Tsinghua Science and Technology, December 2022, 27(6): 881-893

better performance, especially when performing regional
RS data indexing.

Another widely used algorithm suitable to store data
with orthogonal information is the Orthogonal List
algorithm!™?!. Although not specifically designed for
geospatial indexing, the Orthogonal List algorithm can
still be a suitable candidate for RS data storage and
indexing as its structure can perfectly fit the orthogonal
structure such as the longitude and latitude coordinate
of a geographic location. As illustrated in Fig. 3, each
piece of RS data is linked to its geographically-adjacent
region in the Orthogonal List data structure, which
makes the Orthogonal List a natural choice to process
RS data.

2.2 Geospatial storage and indexing framework

Several research efforts have leveraged the

aforementioned popular geospatial indexing algorithms

to design geospatial storage and indexing frameworks.

Eldawy and Mokbel!'®! proposed an RS data storage
and indexing framework named SpatialHadoop, which
utilises their own designed Uniform Grid Index
algorithm. The SpatialHadoop uses the HDFES cluster
as the data storage system, and then builds an index
on the upper layer of its file system and constructs

a MapReduce interface to serve external requests.

However, SpatialHadoop suffers from drawbacks caused
by executing the MapReduce program, which requires

a start-up time that downgraded the performance.

Furthermore, SpatialHadoop requires nearly 14000
lines of code based on Hadoop, which made the
implementation very labourious.

The MapReduce-based SHAHED framework was also
proposed by Eldawy et al.?!! to query, visualise, and

mine large-scale RS data generated by the satellites.
Unlike their previous work, SHAHED leverages
QuadTree as its indexing method. The SHAHED
considers both spatial and temporal aspects of the RS
data for effective querying. The query component of
the SHAHED constructs the index for querying, and the
visualisation component uses the MapReduce program
to generate the heatmap related to the user query. Despite
these efforts, the SHAHED still suffers from the warm-
up time overhead caused by the MapReduce program,
which reduces its performance.

Al Naami et al.?®! introduced the Geographic
Information System Querying Framework (GISQF) that
works on top of the SpatialHadoop framework. The
GISQF uses a two-layer geospatial indexing strategy to
accelerate query processing. However, the two-layer
geospatial indexing not only consumes a tremendous
amount of construction time and storage resources, but
also requires a sophisticated implementation.

2.3 Motivation and research opportunity

By analysing these aforementioned frameworks, the
HDFS is utilised for data storage by all of them.
However, these frameworks only use a single geospatial
indexing method during index construction and querying,
which limits the merit of HDFS parallelism and the
performance could be limited by utilising only a single
index. Moreover, to efficiently utilise MapReduce, these
frameworks require sophisticated implementation efforts
to make significant modifications to the MapReduce
framework. Hence, it naturally leads to the idea of
unifying multi-indexing mechanisms on top of the HDFS
as it not only enjoys the benefit of parallelism possessed
by the HDFS data replication to speed up the remote

Fig. 3 An illustrative example of the Orthogonal List algorithm when processing the RS data of Beijing. The algorithm stores
the RS data into an orthogonal linked list, in which grids are arranged using their coordinate location.

Jiashu Wu et al.: MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage 885

sensing data indexing process, but also requires subtle
changes and saves the laborious implementation efforts.

In terms of the proposed multi-indexing mechanism,
we utilise two widely-used geospatial indexing
algorithms, i.e., GeoHash and QuadTree, as well as a
traditional data indexing algorithm, i.e., Orthogonal List.
The reasons for adopting these indexing algorithms are
as follows:

e The GeoHash and QuadTree algorithms are
commonly used by geospatial indexing algorithms
for RS datal?®27-2%1_ Although the Orthogonal List is
not specifically designed for geospatial indexing, its
orthogonal linking structure is a suitable solution to store
RS data that possesses orthogonal information, such as
longitude and latitude.

e Unlike other indexing algorithms, such as Uniform
Grid Index and R-tree*!, the GeoHash, QuadTree,
and Orthogonal List algorithms cause subtle time and
space overhead, as they do not require complicated
indexing data structures. These algorithms are light-
weight, simple, and not computation-intensive, which
will not compromise efficiency.

e These three indexing algorithms are relatively
easy to implement and deploy, requiring lighter
implementation efforts.

Hence, by unifying the multi-indexing mechanism
on top of the HDFS with data replication, the system
efficiency can be increased while not causing severe time
or space overhead, and meanwhile avoiding complicated
implementation efforts.

3 MIX-RS Framework and Workflow

In this section, we describe the proposed MIX-RS
approach in terms of its framework and workflow with a
focus on how the multi-indexing is designed on top of
the HDFS to improve the geospatial indexing efficiency.

3.1 MIX-RS framework

The framework of the proposed MIX-RS is illustrated in
Fig. 4. Its workflows between constituting layers are as
follows:

Remote sensing data storage layer: The RS data
captured by satellites are handed over to the RS
data storage layer, which serves as a preprocessing
component to preprocess the data, including image-band
separation and metadata extraction. The multi-index
of the RS data is then constructed by triggering the
geospatial indexing layer, and the constructed multi-
index is regarded as part of the metadata. Each piece

of RS data with its metadata is replicated into three
replicas. The RS data are stored in the underneath HDFS
structurally using its geographical coordinate to form a
tree directory structure, so that it can benefit the data
retrieval and indexing performed later. The RS metadata
are stored in PostgreSQL database that will be used to
decide involved RS data upon receiving the user query
(see Section 3.2.1).

Query interface layer: Users interact with the query
interface layer and submit their query by specifying the
region using longitude, latitude, and time period. The
users also need to specify the type of information that
they want. The query is then sent to the RS data storage
layer for data retrieval, and the results produced by the
geospatial indexing layer are displayed to the users via
the query interface layer. An example query is illustrated
in Fig. 5 (see Section 3.2.2).

Query calculation layer: Once the data involved
in the submitted query are retrieved by the RS data
storage layer, the query calculation layer will process it
to produce the required information, like the vegetation
rate in our experiment, or to calculate the information
such as drought rate, etc. (see Section 3.2.3).

Geospatial indexing layer: Upon receiving the
resulting RS data from the query calculation layer, three
geospatial indexing algorithms are used to transform the
RS images to form a holistic view of the area that they
cover. For better efficiency, each indexing method will
be conducted on one of the data replicas in the HDFS
for parallelised computation, and the outcome produced
by the fastest method will be utilised as the result (see
Section 3.2.4).

3.2 MIX-RS workflow

A detailed explanation of each constituting layer in this
section is provided using the framework design, i.e., the
remote sensing data storage layer, the query interface
layer, the query calculation layer, and the geospatial
indexing layer.

3.2.1 Remote sensing data storage layer

The remote sensing data storage layer in the MIX-RS
framework is used to preprocess, replicate, and store the
RS data received from the satellite. As shown in Step (D
in Fig. 4, the RS data are downloaded from the satellite.
Since the RS data compose of several bands, such as
Normalised Difference Vegetation Index (NDVI), Ratio
Vegetation Index (RVI), and Difference Vegetation Index
(DVD), etc., hence during preprocessing, this 3D RS data
will be flattened into 2D so that bands are separated. The

886 Tsinghua Science and Technology, December 2022, 27(6): 881-893

(e)

uery interface layer
— @ Replicated
ES
<
: °
5 : T
5 Submit IR
b4 l 1 query -"f‘f‘ﬁ R i ;\
s HDFS HDFS HDFS f W,
< ﬁ‘ =
=] vl - RS data @ RS data @ B
(é __ Metadata ‘ T ® — ® - ® Query interface
@ (longitude, latitude), : PostgreSQL PostgreSQL PostgreSQL
time taken, . RS RS
® saiellite type. ¢ metadata metadata
3 constructed indices ;
)
«
8 5
EHE =
e 3 22| | |
,’i{‘f« 55 L D —
BF T < @ @ @
g1 ¥ 7 o
=5
o
8i
) i i !
15}
z 8 E LI
— = S o B @ g .
o 5 oz = Display query result
51 = o= S
R= 3 O g 3
g © © e ©)
=]
R=) l I Return
..—‘9. l result
]
=%
172
I}
Q
\S

Satellite

Fig. 4 MIX-RS framework. The framework constitutes four layers, i.e., the RS data storage layer, query interface layer,
query calculation layer, and geospatial indexing layer. Step (D: the RS data are downloaded to the RS data storage layer
for preprocessing and storage; Step @: the RS data are directed to the geospatial indexing layer to construct three geospatial
indices; Step Q: the three constructed geospatial indices are directed back to the RS data storage layer and are treated as part
of the metadata; Step @: the preprocessed RS data and its metadata are replicated. The RS data are stored into the HDFS
structurally based on its geographical coordinate to form a tree structure, as this kind of directory structure can improve the
data retrieval and indexing performed in later steps. The RS metadata are stored into the PostgreSQL database; Step ®: the
submitted user query will be sent from the query interface layer to the RS data storage layer; Step ©): the PostgreSQL database
will decide which pieces of RS data are involved in the range specified by the submitted query based on the RS metadata. Then,
the required RS data are retrieved from the HDFS and used by the query calculation layer; Step @: The query calculation
layer calculates the required information; Step ®: three geospatial indexing algorithms will be run in parallel, and the result
produced by the fastest one will be utilised; Step 9): The result will be sent to the query interface layer for visualisation.

metadata of the RS images including longitude, latitude,
time taken, and satellite type are also extracted. To
prepare for the multi-indexing mechanism used later, the
RS image metadata will be processed by the geospatial
indexing layer to construct three indices as shown in Step
@. These three constructed indices are then sent back in
Step @ illustrated in Fig. 4 and are treated as part of the
metadata. Finally, as indicated by Step @, the RS data
and its metadata will then be replicated for the purpose
of fault tolerance. The RS data will be stored into HDFS
structurally using its geographical coordinate to form a
tree directory structure, since such kind of structure can
benefit the data retrieval and indexing performed later.
The RS metadata are stored in the PostgreSQL database.

Additionally, as indicated by Step ® in Fig. 4, the
remote sensing data storage layer is also responsible for

retrieving the RS data required by the submitted query,
i.e., RS data that cover the specified geographical range.
For instance, in Fig. 5, the specified blue user query
shown on the left is covered by four pieces of RS data as
shown on the right. The submitted query will specify the
longitude and latitude range of interest, which is used
by the PostgreSQL database to determine which pieces
of RS data are required based on the metadata stored
in it. Once the involved RS data are decided, it will be
retrieved from the HDFS.

3.2.2 Query interface layer

Once the data preprocessing and storage are completed
by the remote sensing data storage layer (Steps D &
@) and the multi-index is constructed by the geospatial
indexing layer (Steps @ &), the system is ready to

Jiashu Wu et al.: MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage 887

Query interface

Drought Monitoring and Early Warning System

Select region, index, period and sensor

Point-1 Point-2 Index Year&Month Type

63.24,43.19 65.71, 4531 NDVI ~|2015.1 ~|lansats ~ RUN

Display query result

e e

Fig. 5 Illustration of an example query. The user queries the region of interest in the query interface on the left by specifying
the longitude, latitude, time period, and image source. The user also needs to specify the type of information they need, in
this example, it is NDVI. The user query is then processed by the MIX-RS framework. In this example, the specified region
involves four RS images, hence the remote sensing data storage layer needs to firstly retrieve the images involved in the query.
The retrieved images are then processed by the query calculation layer to calculate the required information. After calculating
the information that the user needs, these four remote sensing images are placed in their designated position based on their
geographic metadata by the multi-indexing mechanism. Finally, the constructed query result is returned and visualised by the

user interface, as shown on the right-hand side.

receive queries via the query interface layer. Figure 5

presents the query interface and an example user query.

When submitting the query, the user needs to specify
the longitude and latitude of the area that they want
to retrieve. Furthermore, the time period and type of

information they are interested in will also be specified.

The user query interface is illustrated on the left-hand
side of Fig. 5. The query will then be submitted to the
remote sensing data storage layer, as shown in Step &
in Fig. 4. In the end, the final result will be returned to
the query interface layer in Step (@ in Fig. 4 for result
display and visualisation, as shown on the right-hand
side of Fig. 5.

3.2.3 Query calculation layer

As illustrated in Fig. 4, the remote sensing data storage
layer will prepare the required RS data for the query
calculation layer. The query calculation layer can
calculate different types of geospatial information (Step

(@), such as NDVI as shown in the following:

NIR — RED
NDVI = ———— (1
NIR + RED

Note that NDVI is one of the indicator metrics that
are valuable to assessing the rate of vegetation coverage
to reflect the vegetation and nutrition condition of the
area. The NIR is the infrared reflection rate and RED
is the red-light reflection rate. Both the NIR and RED
are two out of ten bands in every piece of RS data. The
calculation is performed pixel-wise, and the result will
still be a matrix with the same dimension as each original
band of the RS data. The calculations are also performed

in parallel between each processing node of the HDFS.
3.2.4 Geospatial indexing layer

The idea of multi-indexing is applied in the geospatial
indexing layer to speed up the construction of the result.
The calculated result produced by the query calculation
layer will be indexed by three geospatial indexing
methods, i.e., GeoHash, QuadTree, and Orthogonal List,
and are performed in parallel. As shown in Step
in Fig. 4, the parallelised index runner monitors the
indexing progress of each processing node and utilises
the fastest one that produces the result. By leveraging
the multi-indexing as an ensemble on top of the HDFS
with data replication, the delay on one or two of the
processing nodes will not affect the overall performance
since the fastest indexing will produce the result to
satisfy the user query. Hence, it is reasonable that the
multi-indexing mechanism can boost the overall system
performance and outperform those systems that only use
a single index, even though the data replication of the
HDEFS provides a perfect prerequisite to utilise multi-
indexing. Once the result is generated, it will be returned
to the query interface layer in Step (@), as shown in
Fig. 4.

3.3 Prototype implementation detail

To verify the effectiveness of our proposed MIX-
RS framework and to make it become applicable in
practice, we follow the architecture as depicted in Fig. 4
to implement the proposed MIX-RS framework with
corresponding designed layers and steps. The details of

888 Tsinghua Science and Technology, December 2022, 27(6): 881-893

the prototype implementation are illustrated in Fig. 6.

To receive the user queries, we implement a web-
based user interface that allows the users to specify the
region of interest by giving the longitude and latitude
range of the region. To complete the query, the users
also need to provide the time period, image source,
and the type of information they need. The submitted
query is then sent to the RequestHandler residing in
the master server via Kafka request message. Upon
receiving the user query, the RequestHandler will ask
the PostgreSQL metadata database to determine which
pieces of RS data are involved in this query. Once
completed, the master server broadcasts the information
of the required data to the HDFS servers for data
retrieval and geospatial indexing. Three HDFS servers
will execute the geospatial indexing in parallel, and the
fastest result received by the RequestHandler from these
HDFS servers will be utilised and sent back to the user
interface via Kafka messaging. Finally, the result will be
displayed on the web user interface.

4 Empirical Evaluation

To validate the effectiveness of the MIX-RS framework,
comprehensive evaluations are performed on real RS
data captured by the LandSat8 satellite. We verify the
superiority of both the multi-indexing mechanism, which
is compared with the single-indexing techniques, and
the overall MIX-RS system, which is compared with
other widely-used systems, such as SpatialHadoop!'®!,
GISQF?Y and SHAHED?!,

4.1 Experimental setup and dataset

To verify the efficacy of the MIX-RS system, real RS
data captured by the LandSat8 satellite are utilised.

4 N\
Query user interface

83 kafka.

The data are from the Central Asian Ecology and
Environment Research Centre of the Chinese Academy
of Sciences!® *8! and contain about 9000 pieces of RS
data, with a total size of around 4TB. The RS data
are in the geotiff file format, with a dimension of
7000 x 7000 x 10. Each experiment is repeated 50 times
and the corresponding results have been plotted with
error bars.

In terms of system hardware configurations, the MIX-
RS system is deployed on five servers, one as the HDFS
master node and three as the HDFS slave nodes, where
each HDFS slave node stores one replica of the RS
data. One extra server is used to deploy the query
user interface. All servers used during experiments
have the same hardware and Operating System (OS)
configuration as shown in Table 1. In terms of software
configurations, all servers have Kafka 2.3.1 installed to
build a message queue for query-result communications,
and have PostgreSQL 11.2 installed to serve as the
RS metadata database. Besides, all HDFS servers have

Table 1 Hardware and OS configuration of the server
infrastructure (The same configuration is applied for all
servers.).

Item Configuration
Intel(R) Xeon(R) CPU
CPU E5-2630 v4@2.20 GHz
(10 cores, 20 threads)
Number of CPUs 2
Memory size 64 GB
Disk space 25TB
oS Ubuntu 16.04.5 LTS
1 HDFS master node +
Cluster configuration 3 HDFS slave nodes +

1 query server

Kafka query request

Query web server

&S kafka.

l Return

Kafka query response

Ve

Request
metadata

Master
server

PostgreSQL

Metadata database

RequestHandler

Broadcast

indexed results metadata request

HDFS
cluster

(
1
1
@ HDES] :
1
1
1
1
1

P
L. i

_ S

Fig. 6 Illustration of the MIX-RS prototype implementation.

Jiashu Wu et al.:

Hadoop 2.9.2 installed.

4.2 Performance evaluation of the multi-indexing
mechanism

To demonstrate the excellent performance and efficiency
of the proposed multi-indexing mechanism against
single indexing methods, the experimental results of
the comparison are shown in Fig. 7. As illustrated
in Fig. 7a, the line-chart clearly indicates that the
multi-indexing mechanism outperforms all other single
indexing methods when handling different number of
random queries, indicated by the shortest amount of
time elapsed. The GeoHash, Orthogonal List, and
QuadTree indexing methods cost nearly 2060%, 436%,
and 60% more processing elapsed time when processing
different number of user queries than the multi-indexing
mechanism, respectively. Therefore, the performance
boost provided by the multi-indexing mechanism is
very significant and can benefit the overall MIX-RS
framework in terms of RS data indexing.

MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage

889

In terms of the scalability of the multi-indexing
method, Fig. 7b is the magnified version of Fig. 7a
without showing the brute force traversal method and
hence the log-scale can be removed for better illustration.
When the number of queries being processed keeps
increasing, the total elapsed time increases linearly. The
linear trend indicates that the method scales well in terms
of query workloads.

4.3 Overhead of the multi-indexing mechanism

An excellent indexing design should enjoy superb
performance and possess an acceptable overhead. To
verify that the multi-indexing leveraged in the MIX-
RS does not have a severe overhead, the memory
consumption and the index construction time are
measured to demonstrate the method is space-efficient,
and the index construction overhead is acceptable.

As shown in Fig. 8a, the memory consumption of
both the multi-indexing mechanism and single indexing
methods are measured. It is natural to observe that

-1

5}

5}

Traversal
—¥— GeoHash

Orthogonal List
—*— QuadTree
—#— MIX-RS

log(total elapsed time (s))

o
5

—¥— GeoHash

05F Orthogonal List
—+— QuadTree

| = MIX-RS

o o o
) w kS
T T

Total elapsed time (s)

o

0 2 4 6 8 10 12 14
Number of queries performed (x10%)

(a)

Number of queries performed (x10%)

(b)

Fig. 7 Performance comparisons between the multi-indexing and single indexing methods when processing different number
of queries. Since the performance of the brute force traversal method is much worse than other methods, hence in (a), log-scale
is applied on the y-axis. To better visualise the relationships between methods and the linear trends, the brute force traversal is

eliminated in (b) and the log-scale in y-axis is also removed.

7000
----- 0.01% of the system memory (64GB) -

@
=}
S
S

I3
=}
S
S

IS
o
S
S

3000 |

Memory consumption (KB)
S
o
o

1000 F l
0

2\ st e 2\ 5
‘((’a‘eﬁ ‘\“ogo(\’a\ A Q\x’adﬂe c,eo““"as \\l\\‘/\?‘
[e)

(a)

35

S

w
S
H

25}

20

Index construction time (ms)

—

2\ ot e XN RS
<@e® \“090“6\ W Qua& © c,eo\‘\as AR
of

(b)

Fig.8 Evaluation of space and time overhead of multi-indexing and single indexing methods. (a) Amount of memory consumed
by each method. The total system memory for each server is 64 GB, and the red dotted line marks 0.01% of the system memory.
(b) Index construction time of each method, i.e., how long it takes for each method to complete the construction of index/indices

it needs.

890 Tsinghua Science and Technology, December 2022, 27(6): 881-893

the multi-indexing mechanism consumes most memory,
which is around 7100 KB. Apparently, constructing
three indices should consume more memory than
constructing a single index. Despite the highest memory
consumption, the memory overhead of the multi-
indexing mechanism is totally acceptable. Since for
modern server infrastructures, nearly all servers are
equipped with a memory that is orders of magnitude
greater than the memory consumed by the multi-
indexing mechanism. The servers we used have a
memory of 64 GB. As indicated by the red dotted line
that marks 0.01% of the system memory, the memory
consumption of the multi-indexing mechanism only
consumes approximately 0.011% of the system memory.
Therefore, the memory overhead is subtle and negligible.

For the index construction time shown in Fig. 8b,
the multi-indexing mechanism achieves nearly the same
performance compared with the slowest single indexing
method GeoHash, which is approximately 35 ms. The
three indices of the multi-indexing mechanism are
constructed in parallel in each processing node, hence,
it is natural to observe that the multi-indexing achieves
nearly the same construction overhead with the slowest
single method, which is not too long. Hence, the index
construction overhead of the multi-indexing mechanism
is not severe.

Therefore, the multi-indexing mechanism brings
significant performance improvement while not causing
a noticeable overhead, demonstrating that using the
multi-indexing mechanism is promising.

4.4 Performance evaluation at the framework level

To verify the performance of the overall framework, we

compare the MIX-RS with three widely-used geospatial
information systems, i.e., SpatialHadoop, GISQF, and
SHAHED. The performance comparison in terms of
query processing time, system establishment time, and
system memory consumption are presented in Figs. 9a,
9b, and 9c, respectively.

As shown in Fig. 9a, the MIX-RS has the fastest
query time among all frameworks. The SpatialHadoop,
GISQF, and SHAHED cost 64, 49, and 1.5 times more
query processing time when processing a relatively large
query that involves around 50 GB of RS data than
the MIX-RS, respectively. This is due to the MIX-RS
not only utilises multi-indexing on top of the HDFS
with the benefit brought by data replication and parallel
computation, but also avoids the warm-up overhead
caused by the MapReduce, unlike other compared
frameworks. Moreover, the query elapsed time linearly
correlates with the size of the data involved in a single
query, which justifies that the MIX-RS presents excellent
scalability when the amount of data involved in the query
varies.

As shown in Fig. 9b, the MIX-RS is the fastest to be
established, i.e., the time it takes from loading the data
to finish constructing the index. The SpatialHadoop,
GISQF, and SHAHED cost 980%, 340% and 600%
more system establishment time than the MIX-RS,
respectively. The evaluation result further demonstrates
that the MIX-RS stands out by having the lowest system
establishment time overhead.

In terms of system memory consumption overhead,
it is natural to observe from Fig. 9c that the MIX-
RS requires the highest amount of memory. However,
compared with the memory capacity possessed by

1.4 6
7000 0.01% of the system memory (GAGB
12 5r
0 __ 6000}
1.0 g '1:2
S 47 < 5000
= = <
2osf é é
E =3t £ 40007
0.6 el S
[. T
S —¥— SpatialHadoop b © 3000
] i) >
GISQF 2F S
04} £ £
—~— SHAHDE % g 2000 |
0.2} —*— MIX-RS %) i
1000
4 ——
0 [l—— i »
- r:::----
0 10 20 30 40 50 39} S 0 S
o® \eOF € g 0P s0f & g
Size of data involved in a single query (GB) 593\\3\\’\36 o ot WK oo a“a\\'\aé‘ e\ ot WA
(a)
(b) (©)

Fig. 9 Performance and overhead comparisons at the framework level. (a) Amount of time taken to complete queries that
involve different RS data sizes. (b) System establishment time of each system to indicate the time overhead. (c) Memory
consumption of each system to show the space overhead of each method. The total system memory for each server we used
is 64 GB, and the red dotted line marks 0.01% of the system memory.

Jiashu Wu et al.:

modern hardware infrastructures we used, the amount of
memory consumed by MIX-RS is only slightly greater
than 0.01% of the entire 64 GB system memory, which is
only a tiny portion. As such, despite naturally the MIX-
RS consumes the highest amount of memory, the ample
space makes the overhead negligible. By demonstrating a
low time and space overhead, the excellent performance
and subtle overhead make the MIX-RS very applicable.

5 Conclusion

In this paper, we propose the MIX-RS framework for
more efficient RS data indexing. The MIX-RS naturally
unifies the multi-indexing mechanism on top of the
HDEFS with data replication enabled. This unification
is natural when data replication presents since it can
utilise parallelism to boost the indexing performance.
Hence, this holistic framework combines the fault
tolerance provided by the HDFS and the indexing
performance speedup provided by the multi-indexing
mechanism. Moreover, the MIX-RS framework requires
very little effort in terms of framework implementation
and has a low modification complexity. The framework
causes very little time and space overhead to construct,
making it feasible and applicable. Comprehensive
experiments using real RS data are performed to verify
the effectiveness of the multi-indexing mechanism,
demonstrating the superior performance of the MIX-RS
system. Furthermore, both time and space overhead are
evaluated, demonstrating the applicability of the MIX-
RS system.

Acknowledgment

This work was supported in part by Key-Area Research
and Development Program of Guangdong Province
(No. 2020B010164002) and the Fundamental Research
Foundation of Shenzhen Technology and Innovation
Council (No. KCXFZ20201221173613035).

References

[1] The National Aeronautics and Space Administration, https://
www.nasa.gov/, 2021.

[2] European Space Agency, https://www.esa.int/, 2021.

[3] LandSat Science, Landsat 8 overview, https://landsat.
gsfc.nasa.gov/landsat-8, 2021.

[4] J. W. Wang, X. Huang, J. Y. Zheng, C. Rajapakshe, S.
Kay, L. Kandoor, T. Maxwell, and Z. B. Zhang, Scalable
aggregation service for satellite remote sensing data, in Proc.
20'" Int. Conf. Algorithms and Architectures for Parallel
Processing, New York, NY, USA, 2020, pp. 184-199.

[51 Y. B. Huang, Z. X. Chen, T. Yu, X. Z. Huang, and X. F.
Gu, Agricultural remote sensing big data: Management and

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage 891

applications, J. Integrat. Agric., vol. 17, no. 9, pp. 1915—

1931, 2018.
D. M. Huang, X. N. Liu, B. M. Song, J. Chen, S. Masae,

Y. S. Wang, T. Shigeo, H. Yoshimichi, and Y. Yasuo,
Vegetation spatial heterogeneity of different soil regions in
Inner Mongolia, China, Tsinghua Science and Technology,

vol. 12, no. 4, pp. 413-423, 2007.
D. M. Huang, Y. S. Wang, S. Masae, X. N. Liu, B. M. Song,

J. Chen, T. Shigeo, H. Yoshimichi, and Y. Yasuo, Spatial
heterogeneity of vegetation in China, Tsinghua Science and

Technology, vol. 12, no. 4, pp. 424-434, 2007.
J. Y. Liang and D. S. Liu, Estimating daily inundation

probability using remote sensing, riverine flood, and storm
surge models: A case of hurricane harvey, Remote Sens.,

vol. 12, no. 9, p. 1495, 2020.
M. Chen, S. W. Mao, and Y. H. Liu, Big data: A survey,

Mobile Netw. Appl., vol. 19, no. 2, pp. 171-209, 2014.
M. Li, J. S. Wu, J. B. Dai, Q. S. Jiang, Q. Qu, X. L. Huang,

and Y. Wang, A self-contained and self-explanatory DNA

storage system, Sci. Rep., vol. 11, p. 18063, 2021.
J. M. Haut, M. E. Paoletti, S. Moreno-Alvarez, J. Plaza, J. A.

Rico-Gallego, and A. Plaza, Distributed deep learning for
remote sensing data interpretation, Proc. IEEE, vol. 109, no.

8, pp. 1320-1349, 2021.
M. S. Warren, S. P. Brumby, S. W. Skillman, T. Kelton,

B. Wohlberg, M. Mathis, R. Chartrand, R. Keisler, and
M. Johnson, Seeing the earth in the cloud: Processing one
petabyte of satellite imagery in one day, in Proc. of the
2015 IEEE Applied Imagery Pattern Recognition Workshop

(AIPR), Washington, DC, USA, 2015, pp. 1-12.
L. H. Li, W. P. Jing, and N. H. Wang, An improved

distributed storage model of remote sensing images based
on the HDFS and pyramid structure, Int. J. Comput. Appl.

Technol., vol. 59, no. 2, pp. 142-151, 2019.
B. E. B. Semlali and C. El Amrani, Big data and remote

sensing: A new software of ingestion, Int. J. Electr. Comput.

Eng., vol. 11, no. 2, pp. 1521-1530, 2021.
Z. C. Xing and G. M. Li, Intelligent classification method

of remote sensing image based on big data in spark
environment, Int. J. Wirel. Inf. Netw., vol. 26, no. 3, pp.

183-192, 2019.
P. Y. Wang, J. Q. Wang, Y. Chen, and G. Y. Ni, Rapid

processing of remote sensing images based on cloud
computing, Future Gener. Comput. Syst., vol. 29, no. 8,

pp. 1963-1968, 2013.
A. K. Karun and K. Chitharanjan, A review on hadoop-

HDFS infrastructure extensions, in Proc. of the 2013
IEEE Conf. Information & Communication Technologies,

Thuckalay, India, 2013, pp. 132-137.
A. Eldawy and M. E. Mokbel, SpatialHadoop: A

MapReduce framework for spatial data, in Proc. of the 2015
IEEE 31°! Int. Conf. Data Engineering, Seoul, Republic of

Korea, 2015, pp. 1352-1363.
A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan,

Cg_Hadoop: Computational geometry in MapReduce, in
Proc. 218" ACM SIGSPATIAL Int. Conf. Advances in
Geographic Information Systems, Orlando, FL, USA, 2013,
pp- 294-303.

892

[20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

K. M. Al Naami, S. Seker, and L. Khan, GISQF: An efficient
spatial query processing system, in Proc. of the 2014 IEEE
7t Int. Conf. Cloud Computing, Anchorage, AK, USA,
2014, pp. 681-688.

A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek,
and S. Ghani, SHAHED: A MapReduce-based system for
querying and visualizing spatio-temporal satellite data, in
Proc. of the 2015 IEEE 315" Int. Conf. Data Engineering,
Seoul, Republic of Korea, 2015, pp. 1585-1596.

M. W. Ding, L. Zheng, Y. C. Lu, L. Li, S. Guo, and M. Y.
Guo, More convenient more overhead: The performance
evaluation of Hadoop streaming, in Proc. 2011 ACM Symp.
Research in Applied Computation, Miami, FL, USA, 2011,
pp. 307-313.

X. F. L, C. Q. Cheng, J. Y. Gong, and L. Guan, Review
of data storage and management technologies for massive
remote sensing data, Sci. China Technol. Sci., vol. 54, no.
12, pp. 3220-3232, 2011.

A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, Spatio-
temporal indexing in non-relational distributed databases, in
Proc. of the 2013 IEEE Int. Conf. Big Data, Silicon Valley,
CA, USA, 2013, pp. 291-299.

I. S. Suwardi, D. Dharma, D. P. Satya, and D. P. Lestari,
Geohash index based spatial data model for corporate, in
Proc. of the 2015 Int. Conf. Electrical Engineering and
Informatics (ICEEI), Denpasar, Indonesia, 2015, pp. 478—
483.

K.Y. Huang, G. Q. Li, and J. Wang, Rapid retrieval strategy
for massive remote sensing metadata based on GeoHash
coding, Remote Sens. Lett., vol. 9, no. 11, pp. 1070-1078,
2018.

J. J. Liu, H. R. Li, Y. Gao, H. Yu, and D. Jiang, A
GeoHash-based index for spatial data management in
distributed memory, in Proc. of the 2014 22"¢ Int. Conf.
Geoinformatics, Kaohsiung, China, 2014, pp. 1-4.

R. T. Whitman, M. B. Park, S. M. Ambrose, and E. G.
Hoel, Spatial indexing and analytics on Hadoop, in Proc.
224 ACM SIGSPATIAL Int. Conf. Advances in Geographic
Information Systems, Dallas, TX, USA, 2014, pp. 73-82.
C. Xu, X. P. Du, Z. Z. Yan, and X. T. Fan, ScienceEarth:
A big data platform for remote sensing data processing,
Remote Sens., vol. 12, no. 4, p. 607, 2020.

P. Petrov, P. Dimitrov, and S. Petrova, GEOHASH-EAS—A
modified geohash geocoding system with equal-area spaces,
in Proc. of the 18" Int. Multidisciplinary Scientific

Jiashu Wu received the BS degree in
computer science and financial mathematics
& statistics from the University of Sydney,
Australia in 2018, and the MEng degree in
artificial intelligence from the University
of Melbourne, Australia in 2020. He is
currently a PhD candidate at the University
of Chinese Academy of Sciences. His

research interests include big data and cloud computing.

[31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

Tsinghua Science and Technology, December 2022, 27(6): 881-893

GeoConference SGEM2018, Bulgaria, Russia, 2018, pp.
187-194.

N. Guo, W. Xiong, Y. Wu, L. Chen, and N. Jing, A
geographic meshing and coding method based on adaptive
Hilbert-Geohash, IEEE Access, vol. 7, pp. 39815-39825,
2019.

V. Mithal, A. Khandelwal, S. Boriah, K. Steinhaeuser, and
V. Kumar, Change detection from temporal sequences of
class labels: Application to land cover change mapping, in
Proc. 2013 SIAM Int. Conf. Data Mining, Austin, TX, USA,
2013, pp. 650-658.

J. H. Faghmous, M. Le, M. Uluyol, V. Kumar, and S.
Chatterjee, A parameter-free spatio-temporal pattern mining
model to catalog global ocean dynamics, in Proc. of the
2013 IEEE 13" Int. Conf. Data Mining, Dallas, TX, USA,
2013, pp. 151-160.

T. Yu, N. Chawla, and S. Simoff, Computational Intelligent
Data Analysis for Sustainable Development. New York, NY,
USA: CRC Press, 2013.

W. W. Jiang and L. Zhang, Geospatial data to images: A
deep-learning framework for traffic forecasting, Tsinghua
Science and Technology, vol. 24, no. 1, pp. 52-64, 2019.
Z.Y. Zhang, X. N. Tong, K. T. McDonnell, A. Zelenyuk,
D. Imre, and K. Mueller, An interactive visual analytics
framework for multi-field data in a geo-spatial context,
Tsinghua Science and Technology, vol. 18, no. 2, pp. 111—
124, 2013.

S. Li, B. H. Xie, J. S. Wu, Y. Zhao, C. H. Liu, and Z.
M. Ding, Simultaneous semantic alignment network for
heterogeneous domain adaptation, in Proc. 28" ACM Int.
Conf. Multimedia, Seattle, WA, USA, 2020, pp. 3866-3874.
RCEECA CAS, Central Asian Ecology and Environment
Research Center of Chinese Academy of Sciences, http://
www.egi.cas.cn/yjpt/zgkxyzystyhjyjzx-163317/, 2021.

A. Aji, F. S. Wang, H. Vo, R. Lee, Q. L. Liu, X. D. Zhang,
and J. Saltz, Hadoop GIS: A high performance spatial data
warehousing system over MapReduce, Proc. VLDB Endow.,
vol. 6, no. 11, pp. 1009-1020, 2013.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. Cambridge, MA, USA:
MIT Press, 2009.

T.Zhang, L. H. Yang, D. H. Shen, and Y. L. Fan, An efficient
in-memory R-tree construction scheme for spatio-temporal
data stream, in Proc. of the ADMS, ASOCA, ISYyCC, CloTS,
DDBS, and NLS410T, Hangzhou, China, 2019, pp. 253-265.

Jingpan Xiong received the BEng degree
in software engineering from Wuhan
Engineering University in 2017. He is now
a master student in computer science at
the University of Chinese Academy of
Sciences. His research interests include
big data storage, big data processing, and
machine-learning applications.

— -
o
[

Jiashu Wu et al.: MIX-RS: A Multi-Indexing System Based on HDFS for Remote Sensing Data Storage 893

Hao Dai received the BEng and MEng
degrees in communication and electronic
technology from Wuhan University of

He is currently a PhD candidate at Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences. His research interests
include mobile edge computing, federated
learning, and deep reinforcement learning.

Yang Wang received the BS degree in
applied mathematics from Ocean University
of China in 1989, the MEng degree in
computer science from Carleton University,
Canada in 2001, and the PhD degree in
4 computer science from the University of
Alberta, Canada in 2008. He is currently

a professor at Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences. His
research interests include cloud computing, big data analytics,
and Java virtual machine on multicores. He is an Alberta Industry
R&D Associate (2009-2011) and a Canadian Fulbright Scholar
(2014-2015).

Technology in 2015 and 2017, respectively.

Chengzhong Xu received the PhD degree
from the University of Hong Kong, China
in 1993. He is currently the dean of Faculty
of Science and Technology, University
of Macau, China, and the director of the
Institute of Advanced Computing and
Data Engineering, Shenzhen Institute of
Advanced Technology, Chinese Academy
of Sciences. His research interests include parallel and distributed
systems and cloud computing. He has published more than 200
papers in journals and conferences. He serves on a number of
journal editorial boards, including IEEE TC, IEEE TPDS, IEEE
TCC, JPDC, and China Science Information Sciences. He is a
fellow of the IEEE.

